
License:

Disclaimer:

Version 1.11

Magutz Microchip *MPLab Programming
Instructions

A collection of macros to facilitate assembly language programming.

Along with simplifying the use of words, 16 bit registers.

This information and macros are free, you can redistribute modify or do with
them what ever makes you happy, just at least give me some of the credit. I
spent many hours writing and testing them. Also you may want to check with

*Microchip, the language it self is theirs.

A collection of 158 instruction that also include the standard *Microchip
commands. 110 for working with single register and 48 for working with double

registers or words.

Once you get use to them; you'll wonder how you managed without them!

www.magutz.com

And of course there is no guarantee what so ever. By using this information
and/or macros you agree that all risks involved are yours.

Copyright © 2005, MaGutz, inc. All rights reserved.

* Microchip & MPLab are register trade marks of Microchip Technology Inc.

 Any collaboration from your part will be appreciated, like bugs or additional
material that could be added.

software@magutz.com

Let's Keep Life Simple, Why Complicate It?

Step Instruction Format Description Step Instruction Format Description

2 ADD fr, lit Add literal to fr 5 INVF fr1, fr2 Exchanges fr1 with fr2
2 ADDF fr1, fr2 Add 2 frs 1 INCFSZ fr, w Inc fr result in W - Skp
1 ADDWF fr, f Add W to fr 2 JB bit, label Jump if bit = 1
1 ADDWF fr, w Add fr to W 2 JC label Jump to label if Carry
1 ADDLW lit Add literal to W 1 GOTO label Jump to label
2 ADDB fr, bit Add bit to fr 2 JNB bit, label Jump if no bit
2 AND fr, lit AND fr with literal 2 JNC label Jump if no Carry
2 ANDF fr1, fr2 AND 2 frs 2 JNZ label Jump if not Zero
1 ANDWF fr, f AND fr with W 2 JZ label Jump if Zero
1 ANDWF fr, w AND W with fr 1-3 LCALL label Long Call
1 ANDLW lit AND W with literal 1-3 LGOTO label Long Jump
1 CALL label Call function 2 MOV fr, lit Move literal to fr
4 CJA fr, lit, label CJA fr to literal 2 MOVX fr1, fr2 Copy fr2 to fr1
4 CJAF fr1, fr2, label CJA 2 frs 1 MOVWF fr Copy W to fr
4 CJAE fr, lit, label CJAE fr to literal 1 MOVLW lit Copy literal to W
4 CJAEF fr1, fr2, label CJAE 2 frs 4 MOVB bit1, bit2 Copy bit2 to bit1
4 CJB fr, lit, label CJB fr to literal 4 MOVBX bit1, bit2 Copy not-bit2 to bit1
4 CJBF fr1, fr2, label CJB 2 frs 1 NOP No operation
4 CJBE fr, lit, label CJBE fr to literal 2 OR fr, lit OR fr with literal
4 CJBEF fr1, fr2, label CJBE 2 frs 2 ORF fr1, fr2 OR 2 frs
4 CJE fr, lit, label CJE fr to literal 1 IORWF fr, f OR fr with W
4 CJEF fr1, fr2, label CJE 2 frs 1 IORWF fr, w OR W with fr
4 CJNE fr, lit, label CJNE fr to literal 1 IORLW lit OR W with literal
4 CJNEF fr1, fr2, label CJNE 2 frs 1 RETURN Return 1 stack level
1 CLRB bit Clear bit ? RETLW lit Return literal in W
1 CLRC Clear Carry 1 RL fr Rotate Left fr
1 CLRDC Clear Digit Carry 1 RLF fr, w RL fr result in W
1 CLR fr Clear register 1 RR fr Rotate Right fr
1 CLRW Clear W 1 RRF fr, w RR fr result in W
1 CLRWDT Clear Watch Dog Tmr 1 SB bit Skip if bit
1 CLRZ Clear Zero 1 SC Skip if Carry
1 COMF fr, f Complement fr 1 SETB bit Set bit
1 COMF fr, w Complement fr to W 1 SKIP Skip following intruct
3 CSA fr, lit CSA fr to literal 1 SLEEP Sleep Mode set
3 CSAF fr1, fr2 CSA 2 frs 1 SNB bit Skip if no bit
3 CSAE fr, lit CSAE fr to literal 1 SNC Skip if No Carry
3 CSAEF fr1, fr2 CSAE 2 frs 1 SNZ Skip if Not Zero
3 CSB fr, lit CSB fr to literal 1 SETC Set Carry
3 CSBF fr1, fr2 CSB 2 frs 1 SETZ Set Zerro
3 CSBE fr, lit CSBE fr to literal 2 SUB fr, lit Sub literal from fr
3 CSBEF fr1, fr2 CSBE 2 frs 2 SUBF fr1, fr2 Sub fr2 from fr1
3 CSE fr, lit CSE fr to literal 1 SUBWF fr, f Sub W from fr
3 CSEF fr1, fr2 CSNE 2 frs 1 SUBWF fr, w Sub W from fr result W
3 CSNE fr, lit CSNE fr to literal 2 SUBB fr, bit Sub bit from fr
3 CSNEF fr1,fr2 CSNE 2 frs 1 SWAP fr Swap nibbles if fr
1 DEC fr Decrement fr 1 SWAPF fr, w Swap nibbles fr to W
1 DECF fr, w Dec fr result in W 1 SZ Skip if Zero
1 DECFSZ fr, f Dec fr result in fr - Skp 1 TEST fr Test fr for zero
1 DECFSZ fr, w Dec fr result in W - Sk 1 TESTW Test W for zero
2 DJNZ fr, label Dec fr Jump if not Z 2 XOR fr, lit XOR fr with literal
2 IJNZ fr, label Inc fr Jump if not Zero 5 XORB fr, lit Invert bit
1 INC fr Increment register 2 XORF fr1, fr2 XOR 2 frs
1 INCF fr, w Inc fr result in W 1 XORWF fr, f XOR fr with W
1 INCFSZ fr, f Inc fr result in fr - Skip 1 XORWF fr, w XOR W with fr
3 INVW fr Exchanges W with fr1 1 XORLW lit XOR W with literal

MG Instruction Set

Copyright © 2005, MaGutz, inc. All rights reserved.

Step Instruction Description

6 WADD wd, litH, litL Adds a 2-byte literal value to word.
6 WADDF wd1, wd2 Adds two words together and puts the result in wd1.
6 WSUB wd, litH, litL Substracts a 2-byte literal value from word wd1.
6 WSUBF wd1, wd2 Substracts word wd2 from word wd1, result in wd1.
3 WINC wd Increment word.
4 WDEC wd Decrement word.

30 WDIV Rslt, wd, litH, litL Divide wd(fr1H/L) by 2-byte literal, result in Rslt(16bit)
30 WDIVF Rslt, wd1, wd2 Divide word wd1 by wd2, result goes to RsltH/L(16bit)
10 WMULT Result, fr Multiplies fr x W, result goes to Result_H/L.(16bit)
12 WCJA wd, litH, litL, Label Compare word jump if above 2-byte literal value.
12 WCJAF wd1, wd2, Label Compare two words jump if wd1 is above wd2.
12 WCJAE wd, litH, litL, Label Compare word jump if above or equal to 2-byte literal value.
12 WCJAEF wd1, wd2, Label Compare two words jump if wd1 is above or equal to wd2.
12 WCJB wd, litH, litL, Label Compare word jump if below 2-byte literal value.
12 WCJBF wd1, wd2, Label Compare two words jump if wd1 is below wd2.
12 WCJBE wd, litH, litL, Label Compare word jump if below or equal to 2-byte literal value.
12 WCJBEF wd1, wd2, Label Compare two words jump if wd1 is below or equal to wd2.
8 WCJE wd, litH, litL, Label Compare word jump if equal to 2-byte literal value.
8 WCJEF wd1, wd2, Label Compare two words jump if equal.
8 WCJNE wd, litH, litL, Label Compare word jump if not equal to 2-byte literal value.
8 WCJNEF wd1, wd2, Label Compare two words and jump if not equal.

11 WCSA wd, litH, litL Compare word skip if above 2-byte literal value.
11 WCSAF wd1, wd2 Compare two wordss skip if wd1 is above wd2.
11 WCSAE wd, litH, litL Compare word skip if above or equal 2-byte literal value.
11 WCSAEF wd1, wd2 Compare two words skip if wd1 is above or equal to wd2.
11 WCSB wd, litH, litL Compare word skip if below the 2-byte literal value.
11 WCSBF wd1, wd2 Compare two words skip if wd1 is below wd2.
11 WCSBE wd, litH, litL Compare word skip if below or equal 2-byte literal value.
11 WCSBEF wd1, wd2 Compare two words skip if wd1 is below or equal to wd2.
7 WCSE wd, litH, litL Compare word skip if equal to 2-byte literal value.
7 WCSEF wd1, wd2 Compare two words skip if equal.
7 WCSNE wd, litH, litL Compare word skip if not equal to 2-byte literal value.
7 WCSNEF wd1, wd2 Compare two words skip if not equal.
4 WAND wd, litH, litL AND word with a 2-byte literal value.
4 WANDF wd1, wd2 AND word wd1 with value in word wd2.
4 WOR wd, litH, litL OR word wd1 with a 2-byte literal value.
4 WORF wd1, wd2 OR word wd1 with value in word wd2.
4 WXOR wd, litH, litL XOR word wd1 with a 2-byte literal value.
4 WXORF wd1, wd2 XOR word wd1 with value in word wd2.
2 WCLR wd Clears the contents in word.
4 WTEST wd Check word Z status.
2 WRL wd Rotate word bits left wd1.
2 WRR wd Rotate word bits right wd1.

10 WDJNZ wd, Label Decrement word jump if not zero, try using wijnz.
5 WIJNZ wd, Label Increment word jump if not zero, more efficient than wdjnz.
4 WMOV wd, litH, litL Copy 2-byte Literal value to word wd1.
4 WMOVX wd1, wd2 Copy word wd2 to word wd1.
5 WSWAP wd Swap the contents between H and L bytes of word wd1.

Defining words:
#define volts volts_H, volts_L
#define timer timer_H, timer_L

NOTE: It is very important to always remember that there is a difference between working with registers and
 literal values, the little "f" makes a huge difference.

A word is composed of frH and frL.

MG Word Instruction Set
Format

Copyright © 2005, MaGutz, inc. All rights reserved.

Notes:

To use this macros, they must be included in the header of the program
as shown below. (also see below for using word macros)

#include <MG Macros.inc> ; List of Macro definitions

For use with Microchip MPLab MPASM.
Microchip & MPLab are register trade marks of Microchip Technology Inc.

When using values in registers, just add an f to the end of the instru-
tion, all except mov, use movx because movf is already used by Mpasm.
The other exception is movbx = move NOT bit.
example: add = for literal value, addf = for value in register.
Use lower case z & c, Upper case only points to a bit number.

To use the word macros, the words must be defined in the program.
Defining a word:

#define volts volts_H, volts_L
#define timer timer_H, timer_L

NOTE: It is very important to always remember that their is a difference
between working with registers and literal values, the little "f" makes
a huge difference.
A word is composed of frH and frL.

Other Instructions:

Return Return form call function

Bank0 Move to Bank0
Bank1 Move to Bank1
Bank2 Move to Bank2
Bank3 Move to Bank3

This Bank set instructions are the same as "banksel" which alsos use two
instructions even if they are not needed.

Word Macros, working with two registers. This are the same as the basic
instructions, just with a "w" on front of them.

Copyright © 2005, MaGutz, inc. All rights reserved.

	Page 3.pdf
	Header.pdf
	Page 2.pdf

